Có phải số các số nguyên tố là hữu hạn?

Trong các số tự nhiên thì 2, 3, 5, 7...chỉ có thể chia hết cho số 1 và bản thân số đó, đó là các số nguyên tố. Các số 4, 6, 8, 9... thì ngoài số 1, các số này còn có thể chia hết cho nhiều số khác, các số này thuộc loại các hợp số. Số 1 không phải là số nguyên tố cũng không phải thuộc loại hợp số.

Thế trong các số tự nhiên, những số nào là số nguyên tố? Hơn 300 năm trước Công nguyên, một học giả cổ Hy lạp Erathos Thenes đã đưa ra một phương pháp.

Ông viết dãy các số tự nhiên lên một trang giấy rồi dán lên một cái khung, sau đó lần lượt khoét hết các hợp số trong đó và thu được một vật giống như cái rây, các lỗ rây chính là chỗ các hợp số đã bỏ đi. Người ta gọi trang giấy này là chiếc “sàng Eratosthenes” nổi tiếng.

Bằng cách này, Eratosthenes đã thu được các số nguyên tố trong dãy số 50 số nguyên đầu tiên. Ông viết các số từ 1 đến 50, trước hết đục bỏ số 1, giữ lại số 2. Sau đó đục bỏ các số là bội số của 2, để lại số 3. Sau đó đục bỏ số là bội số của 3, để lại số 5. Sau đó loại bỏ các bội số của 5...Nhờ cách này người ta thu nhận được các số nguyên tố trong 50 số nguyên đầu tiên. Đây chính là “phương pháp rây” nổi tiếng.

Theo phương pháp này, ta viết các con số từ 1 - 100 rồi sàng ra các số nguyên tố trong các số tự nhiên từ 1 - 100.

Nhưng theo cách của Eratosthenes, liệu có tìm được số nguyên tố cuối cùng hay không? Và liệu các số nguyên tố có phải là hữu hạn hay không? Vào năm 275 năm trước Công nguyên, nhà toán học Hy Lạp kiệt xuất Ơclit (Euclide) đã dùng một phương pháp kì diệu để chứng minh các số nguyên tố là vô hạn.

Ơclit đã dùng phương pháp phản chứng để chứng minh luận đề vừa nêu. Trước hết ông giả thiết số các số nguyên tố là hữu hạn thì toàn bộ các số nguyên tố sẽ là 2, 3, 5, 7...p, trong đó p là số nguyên tố lớn nhất. Sau đó ta lập số A = 2. 3. 5. 7...p + 1.

Vậy chỉ có thể hoặc A chia hết cho các số nguyên tố hoặc bản thân nó là một số nguyên tố. Vì theo cách thành lập thì A không chia hết cho bất kì số nguyên tố nào từ 2, 3,...p vì số A chia cho các số bất kì 2, 3, 5...p thì đều có số dư là 1 tức là A không chia hết cho bất kì số nào trong các số 2,3, 5...p, điều đó có nghĩa là nó sẽ chia hết cho một số nguyên tố khác lớn hơn p và trái với giả thiết đặt ra. Vậy số các số nguyên tố là vô hạn.

Đây là một định lí quan trọng trong lí thuyết số. Lí thuyết số hay còn gọi là số luận là ngành toán học quan trọng, chủ yếu nghiên cứu các tính chất của số, trong đó có nhiều dự đoán, nhiều vấn đề hết sức lí thú, có nhiều vấn đề cho đến nay vẫn còn chưa được giải quyết. Giả thuyết Goldbach là một trong các số đó.

Thế nào là "Định luật kim tự tháp năng lượng"?

Chúng ta đã tìm hiểu chuỗi thức ăn. Thông qua chuỗi thức ăn, vật chất và năng lượng trong tự nhiên được truyền theo từng cấp sinh vật.

Nước đựng trong thùng lăng trụ, chữ nhật khi để nghiêng sẽ có hình dạng thế nào?

Xin các bạn hãy đổ vào một thùng đựng hình lăng trụ chữ nhật một lượng nước có màu (để dễ nhìn thấy), hãy cố định thùng lăng trụ chữ nhật theo một...

Vì sao tuyết rơi cũng có lúc có sấm?

Có một tối đầu xuân, khu vực Trung, hạ lưu Trường Giang, Trung Quốc gió thổi ngược ù ù. Tuyết rơi mùa xuân rất ít gặp.

Vì sao nhà máy xử lí nước thải có thể phát điện?

Người ta thường nghĩ giữa nhà máy xử lí nước thải và nhà máy phát điện không có mối liên quan gì với nhau. Nhưng cùng với sự phát triển của khoa học...

Bài toán 36 sĩ quan là gì?

Bài toán 36 sĩ quan bắt nguồn từ một truyền thuyết. Truyện kể rằng có lần một quốc vương nước Phổ tiến hành một cuộc duyệt binh lớn, truyền lệnh cho...

Vì sao bóng người có lúc dài có lúc ngắn?

Vào buổi tối khi bạn lùi xa ngọn đèn, nếu chú ý, bạn sẽ quan sát một hiện tượng lí thú là độ dài bóng của chính bạn có thay đổi. Khi đứng dưới ánh Mặt...

Tại sao máy tính có thể trở thành "chuyên gia"?

Chuyên gia" là chỉ những nhân tài chuyên môn sâu trong một lĩnh vực nào đó, như chuyên gia cơ khí, chuyên gia máy tính, chuyên gia y học, chuyên gia...

Vì sao tóc thường rụng?

Việc mọc tóc có liên quan với tình trạng sức khỏe, lứa tuổi và thời tiết. Ở người khỏe mạnh, tóc thường dày, đen nhánh.

Vì sao nói thành phố sinh thái là khu vực sinh sống lí tưởng của loài người?

Khu ăn ở lí tưởng của dân cư thành phố trong tương lai là thành phố sinh thái, tức con người và thiên nhiên chung sống hài hoà, vừa là vườn hoa, vừa...