Người bưu tá ở một bưu cục thường phải phát thư từ, bưu kiện, báo chí đến các địa phương lân cận một trạm bưu điện nào đó ví dụ như trình bày ở hình 1. Hằng ngày ông ta xuất phát từ trạm bưu điện đặt tại điểm O, đi qua hết các đoạn đường lớn, đường ngang ngõ tắt để phân phát tới các bưu điện.
Để giảm bớt việc đi lặp lại nhiều lần một đoạn đường, người bưu tá phải nghĩ cách để tìm ra đường ngắn nhất. Trên thực tế, đó chính là vấn đề vẽ một nét. Điểm khởi đầu và điểm kết thúc đều là trạm bưu điện (điểm O). Dựa vào nguyên lí giải bài toán vẽ một nét, không đi lặp lại con đường nhiều lần, thì trên hình vẽ này tối đa chỉ phải có 2 điểm lẻ.
Nhưng trên hình vẽ này lại có bốn điểm A, C, E, G là các điểm lẻ nên để trên lộ trình không đi lặp lại một đoạn đường nào là không thể được. Thế nhưng cũng có thể chọn cách đi nào đó mà sự lặp lại là ít nhất.
Cách thứ nhất: Theo hình 1 ta sẽ vẽ tuyến đường đi như ở hình 2. Nếu ta vẽ thêm một vài đoạn mới vào hình vẽ trên. Nếu tính cả những đoạn mới vẽ thì mỗi điểm lẻ trên hình vẽ trở thành điểm chẵn, do đó có thể vẽ bằng một nét. Cách vẽ là: O → B → C → G → A → B → C → D → E → F → O. Theo cách vẽ này ở những đoạn có vẽ thêm là đoạn đường phải lặp lại. Nhưng cách đi này đã là tốt nhất chưa? Chưa, vì trong ABCGA độ dài các đoạn trùng lặp lại dài hơn các đoạn khác.
Cách đi thứ hai: Ta xoá các đoạn AB, BC, CG ở hình 2 nhưng lại vẽ thêm A, G như hình 3. Tuy hình này không thể không có sự trùng lặp bằng một nét, nhưng đoạn vẽ thêm nghĩa là đoạn đi trùng lặp lại ngắn hơn. Bây giờ cách đi sẽ là O → A → C → D → E → G → A → G → C → D → E → F → O.
Rõ ràng so với cách thứ nhất, cách thứ hai giảm bớt số đoạn trùng lặp, đây là cách đi trùng lặp có đoạn đường đi ngắn nhất. Đây là cách đi mà trong lộ trình phần trùng lặp không vượt quá phần không trùng lặp.