Suy luận mờ có mơ hồ không?

Khi người ta phán đoán thuộc tính hoặc đặc trưng của một sự vật, thì đều hi vọng có được kết luận rõ ràng, chính xác. Ví dụ "thật" và "giả", "đúng" và "sai". Trong thế giới khách quan có rất nhiều sự vật có thể biểu hiện chính xác được, chẳng hạn ta có thể chia con người ra các loại: sống và chết, nam và nữ. Nhưng cũng có khá nhiều sự vật không thể biểu đạt chính xác được, chẳng hạn: cao và thấp, béo và gầy, nhiều và ít. Ta có thể thấy một người cao 1,78 m là cao. Thế nhưng anh ta nếu sống ở Bắc âu thì người vùng này đâu có cho anh ấy là cao, thậm chí còn cảm giác là anh ấy là thấp nữa chứ. Người sống ở Quảng Châu cảm thấy thời tiết 0oC là "rất lạnh", nhưng người vùng Đông Bắc (Trung Quốc) thì đâu có cho là lạnh. Rất nhiều tiêu chuẩn phán đoán của khái niệm sẽ khác nhau do từng người, từng miền. Và khi phân biệt, chúng chịu ảnh hưởng bởi rất nhiều yếu tố, không có được một giới hạn rạch ròi, và sự khác biệt giữa chúng là mơ hồ.

Vậy thì làm sao để máy tính cũng có thể biểu đạt những khái niệm vào thông tin "không chính xác" này đây?

Nếu giải quyết bằng lôgic truyền thống "đúng hay không đúng" (lôgic bài trung) thì rõ ràng là không thích hợp, mà phải dùng phương pháp "lôgic mờ" để biểu đạt.

Lôgic mờ là phương pháp và công cụ để xử lý những thông tin không thể biểu đạt chính xác. Trong lôgic mờ cho phép có phần là sự thực, có phần là giả dối trong một phán đoán của khái niệm. Nó không chỉ có sự phân biệt "chính xác" và "mơ hồ" về mặt miêu tả khái niệm, mà về phương pháp suy luận lôgic cũng có sự khác biệt, "chính xác" và "mơ hồ". Trong một số trường hợp, nếu dùng cách suy luận chính xác sẽ đi đến kết quả sai. Một ví dụ điển hình là: "lập luận sai về thằng trọc".

"Nếu có n-1 sợi tóc là trọc đầu, vậy có một sợi tóc cũng là trọc đầu".

"Không có sợi tóc nào là thằng trọc".

Hai điểm nêu trên là chính xác. Thế nhưng nếu từ n-1 mà suy ra một triệu lần, nghĩa là sẽ đi đến kết quả sai lầm. Một ví dụ điển hình: "Có một triệu sợi tóc là thằng trọc".

Sự thực có rất nhiều suy lí mà con người thực hiện không trên cơ sở tri thức chính xác, mà là "mơ hồ". Tại lò luyện thép, ông thợ cả có thể căn cứ vào màu lửa mà phán đoán nhiệt độ. Người dân du mục có thể dựa vào độ tà của Mặt Trời mà đoán thời gian. Người nông dân có kinh nghiệm có thể dựa vào hình dáng và màu sắc của mây mà đoán được sự đổi thay của mưa nắng. Khả năng suy luận mờ của con người không thể thực hiện bằng suy luận lôgic truyền thống.

Nói cách đơn giản, suy luận mờ là loại suy luận trên cơ sở lôgic mờ. Có thể đơn giản biểu thị nó bằng hình thức quy tắc là: "nếu phối hợp thành công cái mơ hồ của một nhóm tiền đề thì có thể rút ra kết luận tương ứng. Mức độ "thật", "giả" của kết luận này có liên quan đến kết quả của việc phối hợp mơ hồ đã làm đối với tiền đề".

Ở đây, do tiền đề và kết luận đều có thể là khái niệm mơ hồ, dựa vào lí luận hữu quan của lôgic mờ, có thể biểu thị mức độ phối hợp mơ hồ của tiền đồ bằng giá trị hàm số lệ thuộc, tức là mức độ "thật", "giả" của kết luận. Nghiệm của cả hàm số lệ thuộc thông thường là một số giữa 0 và 1. Khi nghiệm là 0 thì biểu thị hoàn toàn không đáng tin, khi nghiệm là 1 có nghĩa là hoàn toàn đáng tin, còn nằm trong phạm vi từ 0 đến 1 thì cùng với sự tăng dần của nghiệm thì mức độ của sự thật, tức độ tin cậy cũng lớn hơn.

Bây giờ có thể giải quyết vấn đề "lập luận sai về thằng trọc" nêu trên bằng suy luận mờ được rồi. Chúng ta biểu thị độ tin cậy "có n sợi tóc là thằng trọc" bằng T (BOLD (HAIRn)), vậy ví dụ nêu trên có thể biểu thị là:

T (BOLD (HAIRn- 1))= T (BOLD (HAIRn)) + ε

T (BOLD (HAIR0)) = 1

Trong đó ε là số dương rất nhỏ nằm giữa 0 và 1. Sử dụng suy luận trên sẽ có được kết luận chính xác.

So sánh với phương thức suy luận trên cơ sở lôgic truyền thống thì suy luận mờ càng gần với cách suy luận tư duy của con người. Bởi vậy, trong ứng dụng thực tế nó được dùng cho việc cấu tạo máy suy luận hệ thống chuyên gia mờ. Như vậy, dùng hình thức của quy tắc mờ để trình bày, biểu thị và chỉnh lí những kinh nghiệm chuyên gia trong lĩnh vực nào đó thì bằng cách suy luận mờ cho ta những quyết định mơ hồ, chẩn đoán mơ hồ. Có thể nói suy luận mờ đã nâng cao trình độ trí năng của máy tính, và cũng làm cho trí tuệ nhân tạo có thể tiếp cận với tư duy của con người.

Giờ đây thì bạn đã rõ: lôgic mờ không phải là lôgic của sự mơ hồ, suy luận mờ cũng không phải là suy luận mơ hồ.

Tại sao trồng ngô xen kẽ với trồng đậu tương có thể tăng sản lượng?

Ngô và đậu tương trồng với nhau, theo lí mà nói, hai loài tranh nhau chất dinh dưỡng trong đất, nhưng thật kì lạ, chúng lại rất hợp nhau. Hóa ra, hai...

Vì sao trên cao nguyên và núi cao cũng có ao hồ?

Sông hồ phân bố nhiều ở đồng bằng, trên một số cao nguyên, núi cao cũng có nhiều ao hồ.

Vì sao phải hạn chế và loại bỏ "rác thải vũ trụ"?

Kể từ ngày 4/10/1957, Liên Xô cũ phóng vệ tinh nhân tạo đầu tiên đến nay, loài người đã phóng vào vũ trụ hàng vạn vệ tinh nhân tạo, tàu vũ trụ, máy...

Tại sao ở vùng núi có nhiều loại thực vật hơn ở đồng bằng?

Các nhà thực vật học hay những người hái thuốc, thường thích đến những vùng núi, bởi lẽ, cây cỏ thực vật ở đây nhiều hơn hẳn dưới đồng bằng? Tại sao...

Vì sao việc nhai kẹo cao su lại có ích?

Kẹo cao su rất tốt cho sức khỏe không những của trẻ em mà cả với thanh niên. Việc nhai loại kẹo này không những có lợi cho sự phát triển của các cơ...

Vì sao không nên dùng xăng để rửa tay?

Khi sửa chữa xe đạp hoặc ô tô, tay thường dính nhiều vết dầu bẩn. Không ít người thích dùng xăng để rửa tay, hiệu quả rất tốt, thế nhưng dùng xăng để...

Bài toán thỏ gà chung lồng như thế nào?

Đây là bài toán cổ nổi tiếng được ghi trong sách “Sách toán Tôn tử”. Nội dung bài toán như sau:

Sự kiện bệnh đau nhức xảy ra như thế nào?

Trên thế giới có nhiều bệnh kì lạ đưa lại đau khổ cho con người. Năm 1955 – 1972, ở lưu vực sông Thần Thông, huyện Phú Sơn, Nhật Bản đã xuất hiện một...

Vì sao thủ dâm lại có hại cho sức khỏe?

Thủ dâm là những hành vi dùng tay hoặc các phương thức tương tự để kích thích, nhằm tự thỏa mãn nhu cầu sinh lý. Ban đầu, chuyện này có thể là ngẫu...