Thế nào là bài toán bức màn đẳng thức của các tổng số?

Ta hãy xét xem hai tổng mỗi tổng là sáu số tự nhiên:

1 + 6 + 7 + 17 + 18 + 23 = 2 + 3 + 11 + 13 + 21 + 22

Bạn sẽ thốt lên thế thì có gì là lạ

12 + 62 + 72 + 172 + 182 + 232 = 22 + 32 + 112 + 132+ 212 + 222

Bây giờ chắc bạn sẽ cảm thấy có điều khác thường. Quả là bạn sẽ thấy hết sức thú vị khi ta tiếp tục:

13 + 63 + 73 + 173 + 183 + 233 = 23 + 33 + 113 + 133 + 213 + 223

14 + 64 + 74 + 174 + 184 + 234 = 24 + 34 + 114 + 134 + 214 + 224

15 + 65 + 75+ 175 +185 +235 = 25 + 35 + 115+ 135 + 215 + 225

Thế nhưng liệu có điểm dừng hay không? Các đẳng thức bậc 6 bậc 7 v.v... dù có thực hiện khó khăn bạn cũng có thể tìm được và tấm màn đẳng thức chỉ dừng lại ở luỹ thừa bậc 9.

Hai nhóm số này do Fuyi nghĩ ra. Quả là kì diệu. Thế nhưng cơ sở của chúng là gì, dựa vào đâu người ta nghĩ ra. Ngoài hai nhóm số này còn con số nào khác không?

Nhà toán học nổi tiếng Liên Xô trước đây- Gelfan đã giải đáp câu hỏi này. Nguyên do các nhóm số này xuất phát từ các hằng đẳng thức sau đây:

an + a(a + 4b + c)n + (a + b + 2c)n + (a + 9b + 4c)n + (a + 6b + 5c)n + (a + 10b + 6c)n =

= (a + b)n + (a + c)n + (a + 6b + 2c)n + (a + 4b + 4c)n + (a + 10b + 5c)n + (a + 9b + 6c)n

Trong đó n = 1,2,3,4,5. Các nhóm số vừa nêu trên tạo thành từ a = 1, b = 1, và c = 2. Nếu chọn a, b, c là các số khác người ta sẽ nhận được các nhóm số khác có tính chất tương tự và không kể hết được.

Vấn đề tương tự gọi là “vấn đề bức màn đẳng thức các tổng số luỹ thừa k”, gọi vắn tắt là “vấn đề bức màn đẳng thức các tổng số”.

Nhà toán học Trung Quốc quá cố Hoa La Canh đã từng nghiên cứu và đã đạt được nhiều thành quả. Hiện tại người ta đã tính đến các luỹ thừa bậc 9, bậc 10, thế nhưng vấn đề còn chưa được giải quyết đến cùng. Luỹ thừa bậc cao nhất vẫn chưa tìm thấy. Liệu k có giới hạn trên không? Vượt qua giới hạn đó liệu có thể đẳng thức còn đúng không?

Tại sao nhà ở ô tô rất được mọi người hoan nghênh?

Có lúc xem ti vi, ta thấy một số người dân ở nước ngoài sống trong một gian phòng như buồng xe ô tô, người ta có thể thấy nó đi lữ hành khắp nơi, gặp...

Tại sao các kiến trúc có tính đàn hồi có thể chống ảnh hưởng của động đất?

Động đất là một tai hoạ thiên nhiên nghiêm trọng nhất đối với các thành phố hiện đại, nhà cao tầng chi chít, làm thế nào để cho các công trình kiến...

Tại sao chim công biết xoè đuôi?

Tất cả những người từng đến vướn bách thú dạo chơi đều sẽ bị thu hút bởi bộ lông rực rỡ của chim công đực, đặc biệt là khi công đang xoè đuôi.

Các kinh, vĩ độ trên Trái Đất được xác định như thế nào?

Mở một trang bản đồ hoặc quay quả Địa Cầu đặt bàn, bạn sẽ thấy trên đó có những đường vạch ngang dọc rất quy chuẩn. Có đường là thẳng, có đường cong,...

Jesus có thật hay không?

Jesus là Chúa Cứu thế được tín đồ Thiên Chúa giáo tôn thờ. Khác với hai vị sáng lập hai tôn giáo khác là Thích Ca Mâu Ni và Mohammet, Jesus không phải...

Vì sao khi ăn kẹo hoa quả bạn lại thấy có mùi hoa quả?

Khi ăn kẹo hoa quả như kẹo táo, kẹo chuối, kẹo hạnh nhân, bạn cảm thấy có mùi hoa quả tương ứng.

Vì sao bật lửa lại làm bắn ra tia lửa?

Trong bật lửa có đá lửa. Chỉ cần ấn ngón tay đánh "tách" một cái là có thể làm bắn ra nhiều tia lửa.

Dân tộc Hán đã hình thành như thế nào?

Dân tộc Hán là dân tộc có nhân khẩu đông nhất và diện tích phân bố rộng nhất ở Trung Quốc. Nguồn gốc của dân tộc này có thể truy ngược lên đến thời cổ...

Vạn Lý Trường Thành có đúng là một vạn dặm hay không?

Trường Thành là một trong những công trình vĩ đại nhất trong lịch sử thế giới và cũng là niềm tự hào của nhân dân Trung Quốc. Trường Thành gọi đẩy đủ...