“Toán học mờ” có mơ hồ không?

Trong cuộc sống hằng ngày ta thường gặp nhiều khái niệm mơ hồ, ví như khi nấu cơm đổ nước nhiều hay ít, khi giặt quần áo thêm nhiều hay ít bột giặt. Các giới hạn ít nhiều này thật không rõ ràng, thật mơ hồ. Với kinh nghiệm người ta có thể phân định được mức độ nào đó nhưng khi xử lí bằng máy tính sẽ gặp không ít khó khăn. Vì vậy tìm công cụ toán học thích hợp cho việc xử lí các sự việc mơ hồ tự nhiên trở thành điểm nóng của các nghiên cứu toán học.

Từ năm 1937, Black đã từng bàn đến hiện tượng mơ hồ trên phương diện lôgic. Vào năm 1951, trong một luận văn, một người Pháp đã từng đưa ra thuật ngữ “tập hợp mơ hồ” hay “tập mờ”. Năm 1965, giáo sư Zadeh thuộc phân hiệu đại học Berkley ở bang California nước Mỹ đã công bố luận văn về “tập mờ”. Từ đó một ngành toán học mới: toán học mơ hồ hay toán học mờ bắt đầu phát triển mạnh mẽ.

Toán học mờ là ngành khoa học dùng công cụ toán học để nghiên cứu các sự vật mơ hồ. Toán học là ngành khoa học chính xác, còn toán học mờ không hề giảm đi tí nào tính chính xác của toán học. Toán học mờ thử dùng tính định lượng, tính chính xác để xử lí tính mơ hồ, mở rộng phạm vi ứng dụng của toán học. Tập hợp mờ là khái niệm cơ bản của toán học mờ. Điểm khác biệt của các tập hợp mờ (hay còn gọi là tập mờ) là các phần tử của tập hợp mờ có tính chất mơ hồ ở mức độ nào đó. Trên cơ sở của tập mờ ta có thể thảo luận về quan hệ mờ, ma trận mờ và số mờ.

Toán học mờ phát triển dựa vào cơ sở của toán học truyền thống. Toán học mờ không phải là toán học truyền thống nhưng có mối liên hệ với toán học truyền thống. Dưới đây ta sẽ xem xét một ví dụ.

Trong hình học có định nghĩa về vòng tròn “Hình tròn là tập hợp các điểm trên mặt phẳng có khoảng cách không thay đổi tới một điểm cố định trong vòng tròn”. Thế nhưng trong cuộc sống hằng ngày tìm được một hình tròn hoàn toàn phù hợp với định nghĩa toán học là rất khó. Người ta thường nói “Mặt trăng tròn”, “Quả trứng tròn”, “Gương mặt tròn” v.v... đều là các khái niệm mơ hồ. Nếu có ai đó đưa cho bạn một tấm ảnh trong đó có ảnh của nhiều người, người ta yêu cầu bạn chọn trong số đó một gương mặt tròn nhất. Nếu chỉ dùng trực giác thật khó thực hiện được. Chỉ có dùng máy tính kết hợp với các dụng cụ đo đạc may ra có thể hoàn thành được.

Trong toán học truyền thống có định lí: Với các hình có cùng chu vi thì hình tròn có diện tích lớn nhất. Ta biết công thức tính diện tích hình tròn là S = πR2, công thức tính đường chu vi là l = 2πR (R là bán kính của hình tròn). Ta tính tỉ số của diện tích hình tròn với bình phương đường chu vi hình tròn sẽ là S/l2 = 1/4π. Với các hình khác thì tỉ số giữa diện tích và bình phương chu vi sẽ nhỏ hơn hằng số này.

Với một hình tiếp cận với vòng tròn thì tỉ số S/l2 sẽ tiến dần đến số 1/4π. Như vậy ta có thể dùng 4πS/l2 để biểu diễn mức độ tròn của một hình. Bây giờ với các hình người trong tấm ảnh ta chỉ cần đo diện tích và đường chu vi của các gương mặt ta có thể đánh giá mức độ tròn của các gương mặt theo giá trị tỉ số 4πS/l2. Các tỉ số này sẽ có giá trị trong khoảng 0 - 1. Nếu tỉ số càng gần với 1 thì gương mặt càng tròn. Dùng phương pháp này máy tính có thể chọn được gương mặt tròn nhất trong các gương mặt trong tấm ảnh.

Toán học mờ đã đưa ra phương pháp miêu tả định lượng cho ngôn ngữ tự nhiên để ngôn ngữ tự nhiên chuyển hoá thành ngôn ngữ máy, nhờ đó nâng cao độ linh hoạt của máy tính. Toán học mờ kết hợp với máy tính đã có ứng dụng rộng rãi và đạt nhiều kết quả. Ví dụ Pabis và các cộng sự ở nước Anh đã dùng toán học mờ để chế tạo các thiết bị điều khiển điểm nút giao thông ngã mười. Pael của ấn Độ và các đồng sự đã dùng toán học mờ để phân biệt lời nói của người nói. Người Nhật Bản đã dùng toán học mờ để chẩn đoán bệnh cổ trướng, để điều khiển tàu điện ngầm, máy giặt quần áo, máy hút bụi, máy điều hoà không khí, nồi cơm điện v.v... Người Trung Quốc đã dùng toán học mờ để dùng vào việc dự báo khí tượng, chẩn đoán y học, trong công tác tình báo, chẩn đoán bệnh cổ trướng, công tác quy hoạch, điều khiển nhiệt độ lò, quản lí kinh doanh…

Toán học mờ không chỉ là không mơ hồ mà còn dùng phương pháp chính xác để nghiên cứu sự vật mơ hồ, là một môn khoa học có nhiều ứng dụng lí thú.

Đường sắt leo núi có điểm gì đặc biệt?

Đường sắt là một hình thức giao thông trên bộ được sử dụng rộng rãi nhất, nó có thể vượt qua sông bằng cầu lớn, cũng có thể vượt qua núi cao bằng...

Côn trùng bảo vệ mình bằng cách nào?

Trong các loài vật hiện có trên Trái Đất, côn trùng chiếm khoảng 80%, có thể nói rằng, trong lịch sử biến hoá mấy tỉ năm của giới động vật, côn trùng là đông nhất.

Đứng trước tình trạng nhiệt độ toàn cầu tăng lên, chúng ta phải có biện pháp gì?

Các nhà khoa học đã đưa ra hai biện pháp “thích ứng” và “hạn chế”. Thích ứng chính là áp dụng mọi biện pháp để thích ứng với sự thay đổi của khí hậu,...

Các nhà du hành sinh hoạt trong vũ trụ như thế nào?

Vũ trụ là nơi trọng lực rất bé, ở đó sinh hoạt của các nhà du hành khác xa trên mặt đất. Ví dụ ăn.

Tại sao chặt cây kê huyết đằng lại thấy “máu” chảy ra

Ở các tỉnh Vân Nam, Quảng Tây, Quảng Đông, Phúc Kiến, Triết Giang của Trung Quốc có một loại cây thân mây, song có ra quả. Cây này thường quấn quanh...

Tại sao cá voi biết "tự sát tập thể"?

Sáng sớm ngày 22 tháng 12 năm 1985, tại vịnh Đả Thuỷ áo, tỉnh Phúc Kiến, Trung Quốc, nước thuỷ triều dâng cao, sóng biển cuồn cuộn, các ngư dân ở thôn...

Vì sao gốm kim loại có thể bền với nhiệt độ cao?

Trong thời đại sản xuất phát triển với tốc độ nhảy vọt ngày càng đòi hỏi tăng cường tốc độ. Ô tô chạy đua và vượt xe ngựa; xe lửa lại vượt ô tô, máy...

Vì sao quốc gia hùng mạnh thì toán học tất nhiên phải ở trình độ tiên tiến?

Sự thật lịch sử chứng minh rằng nếu nước nhà hùng mạnh, kinh tế phát triển, thế nước phồn vinh, tất nhiên trình độ toán học sẽ theo đó mà phát triển...

Tại sao loài chim lại có thể trở thành "kẻ thù" của máy bay phản lực?

Máy bay cất cánh và hạ cánh đương nhiên cần phải có sân bay. Trong quá trình xây dựng sân bay, ngoài các trang thiết bị cần thiết, còn phải chú ý một...