Vì sao trong các túi đựng thực phẩm người ta thường ghi xx g ± x g?
Trong cuộc sống, chúng ta thường cần phải mua bánh ngọt, sữa bột, đường, muối ăn và những thực phẩm thường dùng hàng ngày khác. Ta thường thấy trên bao bì có ghi trọng lượng ròng ghi rõ khối lượng vật phẩm. Nhưng cũng có các bao bì ghi trọng lượng tinh 500 ± 2 g v.v... Như vậy có nghĩa là gì? Con số 500 và 2 có gì khác nhau?
Trong cuộc sống hiện đại, các thương phẩm thường được đóng gói hoàn chỉnh bằng máy đóng gói. Ví dụ theo quy định các túi sữa phải được đóng 500 g. Nhưng do máy đóng gói có khiếm khuyết, do dòng chảy không đều cũng như thao tác của các nhân viên đóng gói và nhiều nguyên nhân khác, trọng lượng sữa trong túi sữa có thể có sai khác với quy định chút ít. Nói chung trên bao bì ghi 500 g chỉ trọng lượng ròng trung bình, còn “±” chỉ ra rằng sự sai lệch có thể về hai phía dương hoặc âm, 2 gam là chỉ sai số trung bình theo tiêu chuẩn có thể mắc phải.
Khi ta lấy bất kì 100 túi để kiểm tra thì chất lượng tinh mỗi túi có thể là X g, X là một con số không xác định có thể là 501 g, hoặc 498 g, hoặc có thể là 500 g. X được gọi là đại lượng thay đổi. Kết quả cân đo được dẫn ra trong bảng dưới đây:
Vì vậy với một túi sữa bất kì, khả năng để trọng lượng ròng của sữa X = 495 g chỉ là 1%, X = 496 chỉ là 2% v.v...tương ứng với các tỉ lệ (xác suất) p = 0,01. 0,02... hay người ta có thể viết p (X = 495) = 0,01 v.v... và tổng các xác suất phải bằng 1. Giá trị p được gọi là xác suất của biến số X để X lấy một giá trị nào đó hay nói cách khác đó là luật phân bố của biến số X. Dựa vào luật phân bố người ta có thể tính giá trị trung bình a của đại lượng biến thiên X.
a = 495 x 0,01 + 406 x 0,02 +... +504 x 0,04 + 505 x 0,01 = 500 và giá trị trung bình là 500 g.
Ta lại tính sai số của đại lượng X với số trung bình X - a, ở đây có 11 loại sai số -5, -4,... 4 và 5. Sai số lớn nhất là 5. Sai số bình quân b sẽ là:
b = |-5| x 0,01 + |-4| x 0,02 +..+ (4) x 0,04 + (5)x 0,01 =1,56
Tức sai số trung bình là 1,56.
Một phương pháp tính sai số khác là tính phương sai σ2.
σ2 = (-5)2 x 0,01 + (-4)2 x 0,03 +...+42 x 0,03 +52 x 0,01 = 4 và σ = 2. Người ta gọi σ là độ lệch chuẩn. Phương sai và độ lệch chuẩn phản ánh sai số của phép đo.
Vì vậy để biểu diễn rõ ràng trọng lượng tịnh phải biểu diễn 500 ± 5 g với sai số lớn nhất hoặc 500 ± 1,56 với sai số tuyệt đối hoặc 500 ± 2 g biểu diễn với độ lệch chuẩn.