Vì sao người ta chia ra hai loại số hữu tỉ và số vô tỉ?

Câu hỏi này liên quan đến một câu chuyện cổ lí thú.

Vào thế kỉ thứ VI trước Công nguyên có nhà toán học cổ Hy Lạp là Pithagore, ông cho rằng trên đời chỉ có loại số nguyên và tỉ số giữa hai số nguyên (phân số). Ví dụ người ta có thể dùng số nguyên hoặc tỉ số giữa hai số nguyên để biểu diễn độ dài của một đoạn thẳng. Khi dùng lực như nhau để gảy lên các dây đàn có tỉ số độ dài bằng tỉ số các số nguyên như 2: 3 hoặc 3: 4 thì sẽ phát ra các hài âm (âm giai: âm thanh êm tai). Tóm lại theo quan điểm của Pithagore, “vạn vật trong vũ trụ đều liên quan với số nguyên”.

Thế nhưng thực tế lại không phải như vậy.

Một ngày kia, có một học sinh đặt ra cho Pithagore một câu hỏi: Liệu có thể dùng số nguyên hay tỉ số giữa hai số nguyên để biểu diễn đường chéo của hình vuông mà cạnh hình vuông bằng 1? Để trả lời câu hỏi này cần phải chứng minh. Pithagore đã tiến hành phương pháp chứng minh như sau đây:

Trên hình vẽ trình bày hình vuông cạnh bằng 1 và đường chéo giả sử được biểu diễn bằng số nguyên hay tỉ số của hai số nguyên p/q.

Theo định lí Pithagore ta có:

(p/q)2 = 12 + 12 = 2

hay p2 = 2q2

Theo kết quả trên vì 2q2 là số chẵn nên p2 là số chẵn (p không thể là số lẻ vì một số lẻ bất kì, ví dụ 2n + 1 khi nâng lên bình phương phải là số lẻ: (2n+1)2 = 4n2 + 2n2+1.

Vả lại p và q không có ước số chung nên p đã là số chẵn thì q phải là số lẻ.

Nếu p là số chẵn, ta có thể đặt p = 2a do vậy

điều đó chứng minh q2 là số chẵn và như vậy q cũng phải là số chẵn; như vậy trái với giả thiết đặt ra từ ban đầu và xuất hiện mâu thuẫn là q vừa là số lẻ vừa là số chẵn. Mâu thuẫn vừa nêu đã đẩy Pithagore vào chỗ bí nhưng cũng làm nhận thức về số của loài người tiến lên một bước.

Việc không thể dùng số nguyên hoặc phân số để đo độ dài của đường chéo hình vuông cạnh bằng 1 không có nghĩa là độ dài của đường chéo này không tồn tại. Thực ra ứng dụng định lí Pithagore ta dễ dàng tìm thấy độ dài của đường chéo là căn số bậc hai của số 2, tức số √2. Như vậy ngoài số nguyên và phân số (tỉ số hai số nguyên) người ta phát hiện một loại số mới mà thời đó còn chưa biết. Do số √2 không biểu diễn được thành tỉ số của hai số nguyên nên người xưa gọi đó là số vô tỉ (không biểu diễn được dưới dạng một tỉ số của hai số nguyên).

Vì sao thợ hàn phải che mặt nạ?

Khi đi qua chỗ hàn điện hoặc hàn hơi, bạn sẽ nhìn thấy ánh sáng lóe lên, tàn lửa bắn ra tung tóe. Chỉ cần đứng ở đó nhìn chăm chú trong 1-2 phút thì...

Con người điều khiển người máy như thế nào?

Người máy là sản phẩm phát triển công nghệ cao, là thể hiện tài trí thông minh của loài người. Người máy là loại máy móc tự động đặc biệt mà con người...

Vì sao tiếng nói từ máy ghi âm phát ra khác với tiếng nói của mình?

Chúng ta thường gặp hiện tượng thú vị sau: khi ta nói hoặc hát, ghi băng lại, cho dù máy ghi âm tốt bao nhiêu thì khi phát băng, âm thanh mà ta nghe...

Vì sao băng tuyết trên đỉnh núi quanh năm không tan?

Một số đỉnh núi ở miền Tây Trung Quốc như Liên Sơn, Thiên Sơn núi Côn Lôn, Hymalaya thường có băng tuyết bao phủ giống như một cái mũ trắng, dù mùa hè...

Tại sao nước đun sôi có cặn trắng?

Đun sôi nước lên và bạn sẽ thấy xuất hiện các cặn, cục nhỏ, lắng đọng ở đáy ấm đun. Thực chất, đây là phản ứng hóa học xuất hiện trong quá trình đun nước...

Vùng đầm lầy được hình thành như thế nào?

Phía Tây Tứ Xuyên Trung Quốc là một vùng thảo nguyên rộng lớn, có rất nhiều bèo, tập trung với mật độ lớn phía dưới lớp bèo thối rữa là lắng cặn và...

Trái đất có từ bao giờ?

Hệ Mặt trời được hình thành từ đám “tinh vân nguyên thuỷ” có dạng hình đĩa tròn xoay vòng với nhiệt độ cao tới 2.000 độ C trên vị trí của Trái đất.

Tại sao chim bồ câu có thể trở về chỗ cũ bằng từ trường?

Đưa chim bồ câu đến một nơi cách xa hàng nghìn mét, sau khi thả chim ra, nó sẽ bay về chỗ cũ một cách chính xác. Tại sao vậy?

Đảo hình thành như thế nào?

Nằm xa lắc ngoài khơi, một hòn đảo xinh đẹp với cây cối xanh rờn nhưng cô độc giữa bốn bề nước mênh mông. Cách nó hàng trăm km, một vòng tròn san hô...