Thế nào là mật mã học?
Nói đến mật mã tự nhiên mọi người liên tưởng đến các hoạt động chính trị, quân sự, nghĩ đến các nhân viên điệp báo. Sự thực thì ngày nay mật mã đã có mối liên hệ hết sức chặt chẽ với cuộc sống hàng ngày. Ví dụ bạn đến ngân hàng để gửi hoặc lĩnh tiền bạn phải quy định mật mã. Các đơn vị muốn lưu giữ các văn kiện quan trọng cần phải có từ đóng mở bằng mật mã. Các mạng lưới máy tính của ngân hàng cần có hệ thống mật mã để gìn giữ an toàn các số liệu.
Do việc sử dụng các máy tính ngày càng rộng rãi, phát triển từ máy, mạng và máy chủ, đối với việc giữ gìn an toàn số liệu đã dần dần vượt xa khái niệm bảo mật theo truyền thống, hình thành loại thuật toán mật mã và quản lí khoá mật mã kết hợp thành một ngành học hoàn toàn mới: mật mã học. Mật mã học hiện đại khác với mật mã truyền thống là có giá thành thấp nhất và hiệu suất cao nhất, dùng phương pháp xử lí số liệu điện tử (EDP = electronic data processing) là phương pháp thu thập thông tin kết hợp kĩ thuật số hoá nên có tính bảo hộ cao.
Vấn đề cơ bản của mật mã học là thiết kế một cách chuyển đổi “lời thường” (có thể hiểu được như bình thường) thành các “mật ngữ” (không hiểu được theo cách thông thường). Để hiểu các mật ngữ phải qua cách phân tích theo quy tắc ngược với khi tiến hành mã hoá mới khôi phục lại thông tin ban đầu. Để thực hiện phương pháp biến đổi phải nhờ hệ thống dịch mật mã. Để dịch mật mã người ta cần một bản mã gốc hoặc tự điển bên trong có thuyết minh, làm thế nào để phiên dịch các chữ, lời thành câu, thành các nhóm mật ngữ. Hệ thống mật mã có hai bộ phận cơ bản: một là thuật toán mật mã, đó là quá trình hoặc là một nhóm quy tắc, một số bước đi; hai là nhóm khoá mật mã do người sử dụng mật mã là các chữ số bí mật, cách sắp xếp thứ tự.
Thuật toán mật mã là nhóm các phép biến đổi, cách biến đổi được quy định dựa vào khoá mật mã. Mỗi cách biến đổi có thể biến đổi từ lời nói thường sang mật ngữ được gọi là sự mã hoá. Mỗi phép đổi có cách biến đổi ngược duy nhất, phép biển đổi ngược này được gọi là sự giải mã. Để thực hiện việc giải mã cũng cần một khoá giải mã tương ứng. Toàn bộ quá trình trên ta có thể dùng ngôn ngữ toán học để mô tả. Cho P đại diện tập hợp các phần tử của lời nói thường P = {P1, P2,...Pn}; còn C là tập hợp các phần tử của mật ngữ C = {C1, C2,...Cn}. Trong quá trình mã hoá ta dùng quy tắc E để thuyết minh. Với mỗi phần tử p của P, ta có thể tìm phần tử đối ứng trong C là c, ta có c = E(p). E là hàm biến đổi. Tập hợp P là hàm khu vực, tập hợp C là hàm khu vực liên hợp.
Trong những năm 70 của thế kỉ XX đã có sự hoàn thiện trong quy trình mã hoá. Ngày 15-1-1977 hiệp hội tiêu chuẩn hoá của nước Mỹ đã đưa ra tiêu chuẩn quốc gia về mật mã cho nước Mỹ.